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2Grand Acce´lérateur National d’Ions Lourds, Commissariat a` l’Energie Atomique, De´partement de Science des Mate´riaux,
CNRS/IN2P3, Boiˆte Postale 5027, F-14021 Caen Cedex, France

~Received 11 March 1996!

We investigate properties of the fragment multiplicity distribution obtained in the sequential binary frag-
mentation process at the transition line. We show that the multifragment cumulant correlation functions have
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I. INTRODUCTION

Most of the fragmenting systems are characterized by
strongly off-equilibrium processes that cease due to dissipa-
tion. To take these features into account, a kinetic fragmen-
tation model has been proposed recently wherein a dissipa-
tive process stops randomly the sequential fragmentation
@1,2#. Sequential, conservative fragmentation is particularly
interesting since it is believed to yield ‘‘universal’’ features,
i.e., characteristic behaviors that do not depend on the pre-
cise mechanism governing the fragmentation. In the follow-
ing, we shall consider the simplest version of this model,
called the fragmentation-inactivation-binary~FIB! model,
where the kinetic rate equation describes a purely binary pro-
cess, i.e., any fragmenting cluster gives birth to exactly two
fragments@3#.

Our aims in this work are limited to an understanding of
the multiplicity distributions at the transition line between
`-cluster and shattering phases of the FIB process@1,2#.
~Multiplicity probability distributions in both̀ -cluster and
shattering phases are planned to be discussed in a separate
paper@4#.! It is our experience that most of the gross mea-
sures of the cluster-mass~size! distribution do not discrimi-
nate among models unless supplemented with more fine-
grained information, especially correlations of various kinds.
For that reason, we analyze in detail the supplementary in-
formation that could help to distinguish different fragmenta-
tion mechanisms and are contained in the multiplicity distri-
butions and their scaling features. The generality of the
fragmentation process as described by the FIB model permits
us to hope that the results of this paper should be relevant in
different domains of physics: multihadron production in
high-energy collisions, nuclear multifragmentation pro-
cesses, polymer fragmentation, photoelectron count distribu-
tions in optics, meteorite or asteroid fragmentation, and the
galaxy distribution. After all, the common feature of galaxy
distributions, the quantum chromodynamic evolution, and
the turbulent cascades is an underlying scaling and branching
mechanism, even if obscured in observable limits. All these
systems are clearly dissipative and hence apt for a descrip-
tion by FIB process.

After briefly discussing in Sec. II some general features of
the FIB model~for details see Ref.@2#!, we present in Sec.

III the cascade equations for the multiplicity evolution. Par-
ticular properties of these equations at the transition line of
FIB model are discussed in detail and the closed formulas for
the higher-order moments of the multiplicity distributions are
given analytically. In Sec. IV we discuss features of the mul-
tiplicity distributions that obey asymptotically the Koba-
Nielsen-Olesen~KNO! scaling law. Detailed properties of
the multiplicity distribution at the transition line are pre-
sented in Sec. V. We show in particular the existence of
several distinct domains of the multiplicity distributions—
the Cayley domain (0,pF,1/2, a.21!, the evaporative
domain (0,pF,1, a,21!, the Brand-Schenzle~BS! do-
main (1/2,pF,1, a.21!—and discuss the appearance of
the KNO asymptotic scaling. In Sec. VI we show that the
asymptotic multiplicity distributions in the BS domain arise
as a special solution of the stochastic equations of the mul-
tiplicative type. In Sec. VII we investigate the structure of
higher correlations in the FIB process at the transition line.
We show in particular that the linked-pair ansatz for higher
multifragment correlations holdsexactly in all multiplicity
domains and seems to be a basic property of a self-similar
binary fragmentation process with inhibition. Finally, the
main conclusions of the paper are given in Sec. VIII.

II. SOME FEATURES OF THE FIB MODEL

In the FIB model, one deals with clusters characterized by
some conservative scalar quantity, which shall be called the
cluster mass. The ancestor cluster of massN relaxes via an
ordered and irreversible sequence of steps. The first step is
either a binary fragmentation, say, (N)→( j )1(N2 j ), oc-
curring with the probability pF(N), or an inactivation
(N)→(N)* with probability pI(N)512pF(N). Once inac-
tive, the cluster cannot be reactivated anymore. The fragmen-
tation leads to two fragments, with the mass partition prob-
ability ;F j ,N2 j . In the following steps, the relaxation
process continues independently for each descendant cluster
until either the low mass cutoff for monomers is reached or
all clusters are inactive. Since for any event the fragmenta-
tion and inactivation occur with the probabilities per unit of
time ;F j ,k2 j and;I k , respectively, the knowledge of the
initial state and these two rate functionsF and I defines
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completely the fragmenting system and its evolution in the
framework of the FIB model.

The composed particle first momentNC[12^n1&/N,
where ^n1& is the average number of monomers, plays the
role of an order parameter when the total massN becomes
infinite. If the probabilityI N /FN that no event occurs tends
to 1, thenNC→1. This is called thè -cluster phasesince
there remains a large cluster of size of orderN. On the con-
trary, whenI N /FN→0,NC,1, i.e., a finite ratio of the total
mass is converted into finite-size clusters: monomers,
dimers, etc. This is theshattered phaseand the asymptotic
(N→`) value ofNC coincides with the total mass. There-
fore, asN→`, one has, in the FIB model, a distinct second-
order phase transition associated with the shattering, i.e., the
total destruction of an infinite cluster.

The second-order shattering phase transition can be char-
acterized by the following alternative reasoning. Each indi-
vidual event is either a fragmentation or an inactivation. One
can define the fragmentation probabilitypF attached to this
choice without specifying the sizes of the descendants:

pF~k!5 (
i51

k21

Fi ,k2 iS I k1 (
i51

k21

Fi ,k2 i D 21

.

The inactivation probability is thenpI(k)512pF(k). When
the instability of the larger clusters is more important than
the instability of the smaller ones,pF is an increasing func-
tion of the size and the system is in the shattered phase.
Conversely, when the instability of the smaller clusters is
more important,pF is a decreasing function of the fragment
size and the system is in thè-cluster phase. The transition
line is characterized by the rigorous independence of the
probabilitiespF andpI on the size of the considered object at
any stage in the fragmentation avalanche. It should be em-
phasized that the asymptotic (t→`) fragment mass distribu-
tion is independent of the functional form of the rate func-
tions F and I on the transition line, whereas it depends
strongly on their form in both shattered and`-cluster phases.

The fragmentation process at the transition line of the
shattering phase transition can be viewed as an externally
driven process whereby the rate functionsF j ,k2 j andI k play
the role of the driving noise. The fragmentation probability
pF during the fragmentation avalanche has afixedvalue be-
tween 0 and 1, independent of time or the size of the frag-
menting object@5#. This FIB process is a branching process,
which can be mapped onto the directed percolation on the
Cayley tree~a mean-field percolation! @6#. Each node of a
Cayley tree is occupied with a probability 1 and at each
occupied point at timeldt one chooses between three possi-
bilities: fragmentation, inactivation, and ‘‘no event’’ with re-
spective probabilities p̃0[p2, p̃1[(12p)2, and
p̃2[2p(12p). At each fragmentation, a given ancestor
cluster is replaced by two descendants and the fragmentation
multiplicity increases by one unit. From one generation to
the next, the number of fragments increases by a factor
p̃112p̃2 in the average. At criticality where the branching
tree barely survives,p̃05 p̃25(12 p̃1)/2 and therefore
pF51/25pI . Let us note in passing that the FIB process at
the transition line is analogous to the process of self-avoiding

random walk because the previously activated sites of this
treelike process ‘‘repel’’ any subsequent reactivation@8#.

The mean-field limit in a broad class of dissipative
coupled systems exhibiting the self-organized criticality
~SOC! @10# can be described by such a critical branching
process@9,8#. It was also demonstrated@11# that by adding a
simple perturbation mechanism to the relaxation rules of the
FIB model one obtains the FIB automaton, which for any
initial condition in the ‘‘high-viscosity’’ region
(0,pF,1/2) drives into the SOC state@10# without charac-
teristic scales in space and time.

In the following, we shall assume the homogeneous mul-
tiplicative fragmentation kernelFi j}( i j )

a and the inactiva-
tion kernel I k in the form I k5I 1k

b. The transition line
@pF(k)5const# in this case corresponds tob52a11 if
a.22 and b5a21 if a,22. The size distribution
n̄s(N) at the transition line is a power law
n̄s(N);Nt21s2t(1!k!N) and the exponentt is always
smaller than 2. Fora50 at the transition linet52pF . The
size distribution in the whole shattered phase behaves also
like a power law@1#: n̄s(N);Nsb22a23(1!k!N), with the
exponent always larger than 2 independently of the strength
I 1 of the inactivation rate@12#. The value of the exponent
t that is easiest to determine phenomenologically does not
fix unambiguously the parameters of fragmentation and in-
activation kernels and hence does not correspond to a unique
fragment multiplicity distribution. It is thus inevitable to
carefully investigate the properties of the fragment multiplic-
ity distribution in addition to the standard techniques of the
fragment-size distribution in order to avoid possible confu-
sion, particularly dangerous in small- and intermediate-size
fragmenting systems such as atomic nuclei, fullerenes, or
metallic clusters.

III. CASCADE EQUATION
FOR THE MULTIPLICITY EVOLUTION

The basic equations of the FIB process, relevant for the
description of the fragmentation of an initial cluster~mass,
energy, etc.!, such as master and cascade equations, have
been given before@1,2#. Here we discuss only those features
of the FIB model that are relevant for the understanding of
multiplicity distributions and their properties.

Let us define the multiplicity of an event at a timet as the
total number of fragmentations that occurred in this event
until time t. Multiplicity defined in this way is then equal to
the total number of fragments minus one, e.g., it equals 0 if
no fragmentation occurred. Let us callPN@m;t# the probabil-
ity to get multiplicitym at timet, starting from one cluster of
sizeN at time 0. The time evolution equation for the multi-
plicity is given by the integro-differential cascade equation

PN@m;t#5d~m!exp@2FN~ t !#

1d~m!~12pF!$12exp@2FN~ t !#%

1E
0

t

exp~2FNt8!dt8 (
j51

N21

F j ,N2 j (
m850

m21

Pj

3@m8;t2t8#PN2 j@m2m821;t2t8#. ~1!
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In the above equation, exp(2FNt) is the probability that no
event occurs in the time interval@0,t# and

FN[I N1 (
i51

N21

Fi ,N2 i .

The parameterpF in ~1! is generally a function of bothFi , j
andFN rate functions and, with the exception of the transi-
tion line, pF depends explicitly on the cluster size. The
meaning of the terms on the right-hand side of Eq.~1! is the
following. The first term is the probability that no fragmen-
tation happens in the interval@0,t#. The second term de-
scribes the inactivation of the clusterN in @0,t#. Finally, the
third term corresponds to the fragmentation of the cluster
N into fragments j and N2 j at time t8 in the interval
@0,t#. In terms of the generating function

GN~x,t !5 (
m50

`

PN@m;t#xm5 (
k50

`

^mk&N
lnkx

k!
, ~2!

the evolution equation can be written in a compact form

1

FN

]GN

]t
~x,t !1GN~x,t !

5~12pF!1
x

FN
(
j51

N21

F j ,N2 jGj~x,t !GN2 j~x,t !, ~3!

with

G1~x,t !51.

This equation provides a convenient way of deriving equa-
tions for the time evolution of moments of the probability
distributionPN@m#. For example, for the factorial moments
of PN@m#,

F̃k[FN
k 5^m~m21!•••~m2k11!&, ~4!

with the particular caseF̃0[FN
051, one gets the evolution

equations

1

FN

]F̃k

]t
1F̃k5(

l50

k S kl D 1

FN
(
j51

N21

F j ,N2 jF j
l
„FN2 j

k2 l

1~k2 l !FN2 j
k2 l21

…, ~5!

with

FN
051, F1

k50.

Using the known relations between factorial moments and
other families of moments such as the ordinary moments,
central moments, cumulant moments, or the factorial cumu-
lant moments, one may obtain from~5! for each member of
this family the corresponding evolution equation. As each set
of moments has its merits and most naturally describes cer-
tain distributions, there is not a preferred evolution equation
and the choice depends on the example studied.

IV. KOBA-NIELSEN-OLESEN SCALING LAW

In general, the form of the probability distribution
PN@m# depends on the size of the fragmenting systemN and
hence on the mean multiplicity of fragments^m&N . The be-
havior of PN@m# for largem and ^m&N is of interest for
many reasons. In the context of strong interaction physics at
very high energies, Koba, Nielsen, and Olesen@14# sug-
gested that the hadron multiplicity data for different average
hadron multiplicities^m& ~different high energy collisions!
should fall on the same curve when^m&Pm (Pm is the nor-
malized probability to observem hadrons! is plotted against
the scaled variablem/^m&:

^m&Pm5 f S m

^m& D . ~6!

The KNO prediction was based on the assumption of the
validity of Feynman scaling for the many-body inclusive
cross sections. Later, the relation of a KNO scaling to a
phase transition in the Feynman-Wilson gas was emphasized
@15#.

The KNO scaling limit is defined by the asymptotic be-
havior of^m&Pm asm→`, ^m&→`, andz[m/^m& is fixed.
The scaling functionf (z) must satisfy the normalization con-
ditions

E
0

`

f ~z!dz51,

E
0

`

z f~z!dz51.

The latter condition fix̂ z&51. Obviously, the moments of
the scaling function

^zi&5E
0

`

zi f ~z!dz[
^mi&

^m& i
~7!

are independent of the average multiplicity^m& and this is a
characteristic feature of the KNO scaling. Besidesf (z), there
is another scaling functiong(z)[z f(z) that yields a differ-
ent form of the KNO scaling law:

mPm5gS m

^m& D . ~8!

The scaling form~6! is satisfied by many distributions in
the class of the Poisson transforms@16#:

Pm5E
0

`

dz f~z!
~z^m&!mexp~2z^m&!

m!
, ~9!

where

(
m50

`

Pm51,

(
m50

`

mPm[^m&.
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If the weight functionf (z) in ~9! is suitably smooth then,
independently of its specific form, the corresponding distri-
bution Pm satisfies the KNO scaling~6! for large m and
^m& @17#, i.e., an exact form ofPm can be reconstructed from
the asymptotic limitf (z). The Bose-Einstein, negative bino-
mial, Laguerre distributions are only a few examples of
physically important distributions in the class of Poisson
transforms that satisfy the KNO scaling~6!.

The scaling functionf (z) can itself be regarded as a prob-
ability distribution defined on the interval 0<z,`. It is then
interesting to compare the moments ofPm for various system
sizes^m&N with those off (z) @Eq. ~7!#. For Pm in the class
of Poisson transforms~9!, the ordinary momentŝzk& of
f (z) are related to the reduced factorial moments ofPm :

Fk5
^m~m21!•••~m2k11!&

^m&k
5^zk&.

Similarly, the normalized cumulant moments off (z) are
given by

gp
~z!5E

0

`

~z2^z&!pf ~z!dz5
f p

~ f 1!
p , ~10!

where f p (p51,2, . . . ) are thefactorial cumulant moments
of Pm ,

f 15^m&5F̃1 ,

f 25^m~m21!&2^m&25F̃22F̃1
2 ,

f 35^m~m21!~m22!&23^m~m21!&^m&12^m&3

5F̃323F̃1F̃212F̃1
3 ,

f 45^m~m21!~m22!~m23!&24^m~m21!~m22!&^m&

112̂ m~m21!&^m&223^m~m21!&226^m&4

5F̃424F̃3F̃1112F̃2F̃1
223F̃2

226F̃1
4 , ~11!

etc., andF̃k are the factorial moments~4!. BothFp and f p ~or
gp
(z)) moments will be shown to be averages over related

correlation functions, withf p allowing the expression of the
easily determinedFp moments in terms of mostly lower-
order factorial cumulant moments. For distributions in the
class of Poisson transforms and for large values of^m&,
gp
(z) should be constant independently of the precise value of

^m&.
Before further continuing discussion, one should examine

meaning of the system size. From the point of the KNO
multiplicity scaling law, the size of the system is given by
the average fragment multiplicitŷm&. On the other hand, in
the kinetic fragmentation models such as, e.g., the FIB
model, the natural size of the system is given by the initial
massN. The important question is then how does the frag-
ment multiplicity ^m& depend onN for given fragmentation
and inactivation rate functions or, equivalently, for a given
fragmentation probabilitypF and asymmetry exponenta. If
^m&N is a monotonic function ofN, then there is one to one
correspondence between^m& andN size scales and a possi-
bility of the multiplicity scaling law in the fragmentation

process can be safely discussed. Otherwise, if
^m&N5const(N), then changing of̂m& means changing the
rate functions~or pF and a) of the fragmentation process
and hence the asymptotic multiplicity distribution. In this
case, there is no reason whatsoever for the existence of a
unique scaling functionf (m/^m&N)5^m&N

(pF ,a)Pm(^m&N)
for different ^m&N . In other words, even thoughgp is inde-
pendent ofN for fixed pF anda, the multiplicity distribution
neither belongs to the class of Poisson transforms nor obeys
the KNO scaling. In such a case, the normalized cumulant
moments off (z) are not equal to the normalized factorial
cumulant moments of the corresponding multiplicity distri-
butionPm .

An important feature holds when the generating function
of the multiplicity probability distribution depends on a
single complex variablex^m&N:

GN~x,t !5 (
m51

`

PN@m;t#xm5F~x^m&N!. ~12!

In this case, since this generating function is nothing but the
Laplace transform ofPN@m#, the probability to get a multi-
plicity m is just

^m&NPN@m#5
1

2ipEc2 i`

c1 i`

F~e2u!eu~m/^m&N!du, ~13!

wherec is a complex constant having a positive real part.
The condition expressed in~12! is then sufficient to get the
KNO scaling, provided the integral~13! is defined. We shall
return to this problem in the next section when discussing the
scaling properties of the FIB process at the transition line.

V. MULTIPLICITY PROBABILITY DISTRIBUTIONS
AT THE TRANSITION LINE

Let us study the generic caseFi j5( i j )a and focus on the
asymptotic regimet→`. As it will be shown below, various
classes of the multiplicity distributions can be defined in dif-
ferent domains of the parameterspF anda.

On the transition line, the asymptotic cluster size distribu-
tion is a power law with the exponentt depending on values
of both the fragmentation probabilitypF and the exponent
a of the fragmentation kernel as@2#

G~t1a!

G~t12a11!
5
1

pF

G~a12!

G~2a13!
. ~14!

On the other hand, from~5! one obtains the recurrence rela-
tion for the multiplicity average

^m&N5pF1
2

FN
(
j51

N21

j a~N2 j !a^m& j , ~15!

with

^m&150.

For the power-law trial function in the casea.21 ~the case
a,21 will be treated in Sec. V D!, one finds

^m&N;aNb,
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with two solutions:

b50→^m&N;
pF

122pF
, ~16!

which is valid forpF,1/2, and

b.0→^m&N;Nb, ~17!

which is valid for pF.1/2. In the latter case, the exponent
b can be obtained by solving the relation deduced from~15!,

2pF
G~a1b11!

G~2a1b12!

G~2a12!

G~a11!
51. ~18!

By comparing with~14! we see that Eq.~18! implies

b5t21.

Hence, forpF,1/2 the fragment multiplicity is a constant
independent ofN, whereas forpF.1/2 the fragment multi-
plicity is an algebraic function ofN:

^m&N;aNt21. ~19!

Finally, for pF51/2 one finds

^m&N;
1

2
lnN. ~20!

One can also obtain from~5! the generalization of the recur-
rence relation for higher-order multiplicity moments. An ex-
ample of that will be shown below in the case of the BS
fragmentation regime.

A. Brand-Schenzle fragmentation regime:pF>1/2,a>21

Let us generalize the above solutions for the average mul-
tiplicity ^m&N @Eq. ~19!# to the case of higher-order (k.1)
multiplicity moments. For that purpose, let us write

F̃k;
1

pF

k! @apFG~a1t!#k

G„c~k!1a11…
Nc~k!ck , ~21!

wherec(k) is an unknown function of bothk and ck and
a is the coefficient in Eq.~19!. Equation~5! for F̃k , in the
limit t→`, yields, in this case,

c~k!5c~ l !1c~k2 l !,

which, knowing thatc(1)5t21, leads to

c~k!5k~t21!.

Moreover,

G„k~t21!12a12…

G„k~t21!1a11…

G~a11!

G~2a12!
ck5(

l50

k

c lck2 l ,

~22!

with

c05pF , c151.

Equation~22! leads to

ck;S G~a11!

~t21!a11D k21

ka,

wherek@1. In particular, we can remark that allck’s di-
verge whent approaches 1, i.e., whenpF→1/2. An impor-
tant case isa50, for which the solution of~22! is

ck5~t21!12k~k>1!.

Using ~22! for any value ofa, one can calculate, for ex-
ample, the asymptotic ordinary scaled moments of the mul-
tiplicity distribution

^mk&N
^m&N

k ;
A~t21!

pFG~a11! S k22t
pFG~a1t!G~a11!

e22t~t21!a1t D k,
~23!

whereN@1 andk@1. Since this ratio is independent of the
average multiplicitŷ m&N , the generating functionGN(x) is
a function of the variablex^m&N and according to~12! and
~13! the KNO scaling holds. The relation~23! can be ap-
proximated around the maximum of the multiplicity prob-
ability distribution as

^mk&N
^m&N

k 5

GS a111k

c D
GS a12

c Dbk21

, ~24!

which immediately suggests the form of the scaling function

f ~z!5Azaexp@2~bz!c# ~25!

in the BS domain. Comparing~24! with ~23!, one can deter-
mine the coefficientsa andc of the KNO scaling function in
the BS fragmentation regime, which reads

f ~z!5Az1/[2~22t!]21exp@2~bz!1/~22t!#, ~26!

whereA is a normalization constant and

b5~22t!22t~t21!t21.

The most probable valueẑ0 of the scaling function~26! as
a function oft is given by

ẑ05H 0 for t<3/2

~t21!2~t21!@2~22t!#2~22t!~2t23!22t

for t.3/2.

~27!

The behavior ofẑ0 at t53/2 is reminiscent of an equilibrium
phase transition if we interpretẑ0 as some kind of the order
parameter. Together with~14!, the relation~27! demonstrates
also an implicit dependence of the most probable valueẑ0 of
the scaling functionf (z) both on the fragmentation probabil-
ity pF , i.e., on the strength of the external driving noise, and
on the degree of asymmetrya of the fragmentation kernel
through the dependence oft on both pF and a. Figure 1
shows the diagrampF2a with all fragmentation regions as
well as the linet53/2:
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pF5
1

22a13

G2~a11!G~4a14!

G3~2a12!
,

separating the two phases~27! in the BS fragmentation re-
gime. A few typical multiplicity distributions for various val-
ues oft are shown in Fig. 2. Unless stated differently, all
calculations presented in this work have been done for the
initial system of sizeN52175131 072 and then results have
been extrapolated to the limitN→` using the Shanks
method@18#.

On the transition line, the normalized cumulant moments
gp
(z) can be calculated analytically for anypF anda.21.

Let us consider first the BS domain@19#. The moments of the
multiplicity distribution are@cf. ~21! and ~22!#

^mk&N;
1

pF

k! @apFG~a1t!#k

G„k~t21!1a11…
Nk~t21!ck ,

whereN is large andk is fixed. Keeping only the leading
terms forN large, one gets asymptotically the solutions

g2
~z!5

1

pF

2@pFG~a1t!#2

G„2~t21!1a11…
c22c1

2 ,

g3
~z!5

1

pF

6@pFG~a1t!#3

G„3~t21!1a11…
c3

23
1

pF

2@pFG~a1t!#2

G„2~t21!1a11…
c2c112c1

3 ,

g4
~z!5

1

pF

24@pFG~a1t!#4

G„4~t21!1a11…
c4

24
1

pF

6@pFG~a1t!#3

G„3~t21!1a11…
c3c1

112
1

pF

2@pFG~a1t!#2

G„2~t21!1a11…
c2c1

2

23F 1pF 2@pFG~a1t!#2

G„2~t21!1a11…
c2G226c1

4 , ~28!

etc., which are valid fora.21 andpF.1/2. These solu-
tions forgp

(z) are independent of the system sizeN and hence
of the average fragment multiplicitŷm&N @Eq. ~19!# pro-
vided this size is large enough. This is a property of distri-
butions obeying the KNO scaling~6! as well as the distribu-
tions in the class of Poisson transforms.

One can easily verify that all momentsgp
(z) are infinite for

pF→1/2 and vanish forpF51. Moreover,g3
(z) becomes

negative forpF larger than some value that depends ona
~provideda,2). For example,g3

(z) for a50 is negative for
pF.0.8856. The dependence ofg3

(z) and g4
(z) on pF for

a521/2, 0, and11/2 is shown in Figs. 3 and 4, respec-
tively.

B. The marginal case:pF51/2,a>21

The casepF51/2 corresponds to the critical point of the
FIB branching process. This case has not yet been solved, as
far as we know, for generala. We present hereinafter the
exact solution for the remarkable pointa50. To find this
solution, one uses the fact that the moments^mk&N depend
only on simple combinations of quantities

Sq~N!5 (
j51

N21
1

j q
.

In the expression for the moment^mp&N , only the combina-
tions of Sq(N) satisfying the relationq11q21•••<2p21
are allowed. It is then easy to obtain all solutions for
^mk&N (k51, . . . ) using symbolic operations

FIG. 1. DiagrampF2a showing different multiplicity domains
at the transition line of the FIB process. The dashed line represents
the line t53/2 separating two phasesẑ050 and ẑ0.0 in the
Brand-Schenzle fragmentation regime.

FIG. 2. Typical multiplicity distributions in the Brand-Schenzle
fragmentation regime, plotted in the KNO variables for various val-
ues oft in the two phasesẑ050 (t<3/2) andẑ0.0 (t.3/2).
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^m&N5
1

2
S1~N!,

^m2&N5
1

2
S1~N!2

1

2
S2~N!1

1

2
S1
2~N!1

1

6
S3~N!

2
1

4
S1~N!S2~N!1

1

12
S1
3~N!,

^m3&N5
1

2
S1~N!2

3

2
S2~N!1

3

2
S1
2~N!12S3~N!

23S1~N!S2~N!1S1
3~N!2

3

2
S4~N!12S1~N!S3~N!

2
3

2
S1
2~N!S2~N!1

3

4
S2
2~N!1

1

4
S1
4~N!1

3

5
S5~N!

2
3

4
S1~N!S4~N!2

1

2
S2~N!S3~N!1

1

2
S1
2~N!S3~N!

2
1

4
S1
3~N!S2~N!1

3

8
S1~N!S2

2~N!1
1

40
S1
5~N!,

~29!

etc. As in the previously discussed case~Sec. V A!, one can
compute, using these solutions, the leading behavior of the
normalized cumulant moments~10!:

gp;
1

2p21
lnp21N.

2p21

2p21
~^m&N!p21, ~30!

which divergewhenN→`, following the divergence of the
average multiplicity~20! whenN→`. Hence the multiplic-
ity distributions in the marginal casepF51/2 anda.21 do
not belong to the class of the Poisson transforms and do not
obey the asymptotic KNO scaling law.

C. Cayley fragmentation regime:pF<1/2,a>21

The FIB process in this regime is analogous to the inva-
sion percolation on the Cayley tree because forpF,1/2 and
a.21 the cutoff scale for monomers does not intervene
@11#. In the following, we shall call this kind of fragmenta-
tion the ‘‘Cayley’’ or the ‘‘high-viscosity’’ fragmentation. In
this regime, the sequential fragmentation process leads natu-
rally to power-law distributions in space and time and is
analogous to the SOC phenomenon. In Ref.@11#, the ava-
lanches were defined in terms of the fluctuating instanta-
neous dissipation rate

f ~ t !5(
k

xk~ t !, ~31!

where the summation goes over all clusters in the fragmen-
tation cascade.f (t) is an indicator function of unstable clus-
ters at a timet. xk(t) is the characteristic function of the
clusterk and equals either 1 fortP@ tk ,tk8#, wheretk is the
time when the clusterk appears andtk8 is the time when it
disappears, or 0 otherwise. The avalanche size is then de-
fined as the total dissipation

ŝ5E
0

`

f ~ t !dt5(
k

~ tk82tk!;m̃T̃ ~32!

of the fragmentation avalanche. This is just the sum of the
lifetimes of all the clusters that have appeared in the se-
quence of breaks, wherem̃ andT̃ are the average multiplicity
and the total fragmentation time for a given event, respec-
tively. For each value of the fragmentation probabilitypF ,
the FIB process provides a different mean-field realization of
a SOC phenomenon with its particular exponents of the
power-law spatiotemporal distributions@11#. The relation be-
tween the invasion percolation and the SOC phenomenon
was noticed independently by Roux and Guyon@20#.

FIG. 3. Normalized cumulant momentg3
(z) as a function ofpF

in the Brand-Schenzle fragmentation regime fora521/2, 0, and
11/2.

FIG. 4. Same as in Fig. 3, but forg4
(z) .
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Following ~3! and assuming that there exists a limiting
stable distributionGN(x)→G(x) whenN→`, one may de-
rive the following equation for the generating function:

G~x!5~12pF!1pFxG
2~x!.

Solving this equation forG(x), one obtains the multiplicity
probability distribution for large enough sizesN:

Pm5
~2m!!

m! ~m11!!

am

~11a!2m11 ~a.21!, ~33!

wherea21511^m&21 as long as

^m&N5
pF

122pF
~34!

is positive. Equation~33! can be rewritten also in the form

Pm5
1

m11

~2m!!

m!m!
pF

m~12pF!m11~pF,1/2,a.21!,

~35!

which explicitly shows the dependence on the fragmentation
probability and hence ont. This distribution is peaked at
m50 and decreases for large multiplicities. As can be seen
from ~16!, the average multiplicitŷm&N for eachpF is as-
ymptotically constant and depends neither on the total size
N of the fragmenting system nor on the value ofa. Obvi-
ously, these distributions do not belong to the class of Pois-
son transform distributions and also do not satisfy the KNO
scaling. The independence of functionsgp[ f p /( f 1)

p on the
system size is not a sufficient condition for this function to
obey the KNO scaling. In any case, the normalized factorial
cumulant momentsgp[ f p /( f 1)

p provide valuable informa-
tion about the multifragment correlations. We shall return to
this problem in Sec. VII when discussing the structure of
multifragment correlations. The values of the first few nor-
malized cumulant moments are given by

g25
324pF
122pF

,

g356
~12pF!~324pF!

~122pF!2
,

g456
352126pF1154pF

2264pF
3

~122pF!3
, ~36!

etc. As in the BS fragmentation regime, we see once again
the divergence of these moments forpF→1/2. In Fig. 5 we
show a few examples of the multiplicity distributions for
different values of the fragmentation probability:
pF50.05,0.25,0.45. Ifz[m/^m& is large, then these distri-
butions behave like

P~z!5z23/2exp~2bz!, ~37!

where

b5
pF

122pF
ln@4pF~12pF!#.

Note the appearance of a power-law distribution
P(z);z23/2 whenpF→1/2.

D. Evaporative fragmentation regime: pF>0, a<21

The fragmentation kernels in this regime are strongly
asymmetric and the preferred splitting at each step in the
fragmentation cascade is (k)→(k21)1(1). This process
resembles the evaporation of light fragments~predominantly
monomers! from a large cluster and therefore we shall call it
the ‘‘evaporative fragmentation regime.’’ At each step of this
process, one branch of the binary fragmentation almost
surely dies out. The dominance of only one fragmentation
branch associated with a large cluster leads to an approxi-
mateN independence of the average multiplicity~see Fig. 6!.
Hence, also in this domain the multiplicity probability distri-
butions are not Poisson transforms, nor do they obey the
KNO scaling.

The limiting casea52` is particularly interesting as in
this case at each step of the fragmentation one monomer is
separated from the large cluster. The generating function of
the probability distribution fora52`, which can be de-
rived from Eq.~3!, satisfies the recurrence relation

GN~x!;12pF1pFxGN21~x!,

which yields

GN~x!;
12pF
12pFx

.

The probability distribution in this case

PN@m#;~12pF!pF
m ~38!

is a special case of a Gamma distribution

FIG. 5. Typical multiplicity distributions in the Cayley fragmen-
tation regime@Eq. ~35!# for various values of the fragmentation
probability: pF50.05 ~long-dashed line!, 0.25 ~solid line!, and
0.45 ~short-dashed line!, plotted in the KNO variables.
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Pk~z!5
gk

G~k!
exp~2gz!zk21 ~39!

in the variablez5m/^m&, with

g5
pF

12pF
lnS 1pFD

and

^z&5
pF
g2 5

k

g
.

g51 in the limit pF→1 and one recovers from~39! the
negative binomial distribution

Pk~z!5
kk

G~k!
exp~2kz!zk21. ~40!

The Bose-Einstein distribution corresponds tok51.
The multiplicity distributions in the evaporative phase for

several values of the parameterpF are shown in Fig. 7 for
a525/2 and in Fig. 8 fora52`. The multiplicity distri-
butions exhibit a strong dependence ona. Close to the bor-
derline between the BS and evaporative fragmentation re-
gimes ~see Fig. 1!, the multiplicity distributions in the
evaporative phase exhibit certain similarities with those in
the BS phase~see Fig. 2! and are different from the distribu-
tions in the limita→2`.

In Figs. 9 and 10 we show the dependence of the normal-
ized cumulant moments of orderp53 and 4 on the fragmen-
tation probability pF for three different values ofa:
25/2,27/2 ~solid lines!, and2` ~dashed line!. In the latter
case,gp is independent ofpF and equals (p21)!, as for the
Bose-Einstein distribution. One should stress thatgp cannot
be calculated using the integral form of the relation~10! with

the limit ~39! for f (z), becausêm&N is independent ofN
and hence the multiplicity distributions in the evaporative
phase do not belong to the class of Poisson transforms. Con-
sequently,gp in Figs. 9 and 10 are calculated directly using
f p’s ~11!. The value ofgp for a52` suggest that we are
dealing with the Bose-Einstein distribution, whereas, in fact,
it is theG distribution that approaches the Bose-Einstein dis-
tribution asymptotically whenpF→1. Nevertheless, as can
be seen in Fig. 11, whereg3/2g2

2 is plotted versuspF for
different a, the relations between momentsgp of different

FIG. 6. Dependence of the average fragment multiplicity^m&N
on the size of the fragmenting systemN in the evaporative frag-
mentation regime, plotted forpF50.25,0.5,0.75 and fora523/2
~solid line! anda527/2 ~dashed line!.

FIG. 7. Typical multiplicity distributions in the evaporative
fragmentation regime, plotted in the KNO variables for various val-
ues of the fragmentation probability:pF50.5,0.75,0.9 and for
a525/2. The simulations correspond to 106 fragmentations of the
system with the initial sizeN51024.

FIG. 8. Typical multiplicity distributions in the evaporative
fragmentation regime, plotted in the KNO variables for various val-
ues of the fragmentation probability:pF50.25,0.5,0.75,0.9 and for
a52` @Eq. ~39!#.
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rank for those different distributions in the evaporative phase
are ‘‘similar’’ to the corresponding relations for the negative
binomial distribution. Fora52` ~dashed line!, this quan-
tity equals 1,exactlyas for the negative binomial distribu-
tion. The curvesg3/2g2

2 vs pF calculated for differenta ’s
(aÞ2`) all converge to 1 in the limitpF→1.

VI. BRAND-SCHENZLE FRAGMENTATION REGIME AS
A MULTIPLICATIVE STOCHASTIC PROCESS

The generic statistical framework for the appearance of
the KNO scaling in the binary fragmentation process is pro-
vided by the cascade equations~1!. They can be written also
in the form of the rate equations

]PN@m;t#

]t
1I NPN@m;t#

5 (
j51

N21

F j ,N2 jS (
m850

m21

Pj@m8;t2t8#

3PN2 j@m2m821;t2t8#2PN@m;t# D
1I Nd~m!, ~41!

which are basicallynonlinear. Rate equations provide a tra-
ditional context for number evolutions@21#. The effect of
mode-mode coupling can be often represented as a noise or
fluctuating force, acting on the chosen mode. These fluctua-
tions arise from the elimination of the irrelevant microscopic
degrees of freedom in favor of a small number of macro-
scopic variables. In this way, one arrives at the Langevin
formulation of the initial multidimensional problem in which
macroscopic variables$zW% are driven by the fluctuating force
F(t):

d

dt
zi5G i~$zW%!1G~$zW%!F~ t !. ~42!

The stochastic process~42! is called additive ifG is inde-
pendent of$zW%; otherwise it is called the multiplicative sto-
chastic process.

The multiplicity distributions generated by the rate equa-
tions~41!, when expressed in the KNO variable, areidentical
in the whole BS domain to the special solution of the one-
dimensional, nonlinear stochastic processes with multiplica-
tive fluctuations

d

dt
z5Dz2Bz11g1zF, ~43!

FIG. 9. Normalized cumulant momentsg3 as a function ofpF in
the evaporative fragmentation regime fora525/2, 27/2 ~solid
lines!, and2` ~dashed line!.

FIG. 10. Same as in Fig. 9, but forg4.

FIG. 11. Ratio of the normalized cumulant momentsg3 /(2g2
2)

in the evaporative fragmentation regime, plotted versuspF for dif-
ferent values ofa. The dashed line corresponds toa52`.
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which was studied by Brand and Schenzle@19# in connection
with certain stochastic processes in nonlinear optics and
chemical reactions. Solutions of this equation include also
many analytic functions proposed to describe multiplicity
distributions inpp and e1e2 collisions @23#. In the above
equation,F represents a Gaussian white noise

^F~ t !F~ t8!&5Qd~ t2t8!, ~44!

and the variablez should be identified with the KNO scaled
variablem/^m&. The associated Focker-Planck equation

]

]t
f ~z,t !52

]

]z
@~Dz2Bz11g1 1

2Qz! f ~z,t !#

1
Q

2

]2

]z2
@z2f ~z,t !# ~45!

permits an interpretation of the FIB process in the BS frag-
mentation regime in terms of the generalized diffusion pro-
cess. The parameters (B,D,g) of the BS equations~43! and
~45! can be expressed by a unique parametert of the power-
law fragment-size distribution

2B

Q
5~t21!~t21!/~22t!,

2D

Q
5

1

2~22t!
,

g5
1

22t
. ~46!

Thus the multiplicity evolution in the BS fragmentation do-
main is a special case of the BS stochastic multiplicative
equation with the parametersB(t), D(t), and g(t)
(1<t<2), defining a line in the manifold$B,D,g%. The
KNO scaling function~26! depends only ont @1,t,2 fol-
lowing Eq. ~14!# and hence the kinetic aspects of the FIB
process that are contained in the fragmentation and inactiva-
tion functions cannot be studied unambiguously. Formally,
parametersB,D,g can be identified with parameters of the
fundamental Hamiltonian of the system as it was demon-
strated, for example, in the laser model@24#. The FIB model
with t53/2, corresponding to a special case of the BS equa-
tions with g52, leads indeed to the laser model@24#. For
g51,B5D, and 2D/Q5k, the BS equations are equivalent
to the linear rate equations for the multiplicity evolution
@17#:

d

dt
Pm5~m21!lPm212mlPm ~P050!, ~47!

for which ^m&(t)5kelt. The solution of this equation has
the same scaling limit~40! as the negative binomial distribu-
tion with

k5^m&~ t !e2lt5
2D

Q
.

The FIB process~41! is compatible with the linear rate equa-
tions only in the limit whenpF→1/2, though the particular

solution forg51 @Eq. ~47!# is not satisfied by the FIB model
in the BS regime for whichBÞD.

VII. STRUCTURE OF THE HIGHER-ORDER CUMULANT
CORRELATIONS

The n-fragment correlation function consists mainly of
statistical combination of lower-order correlations. In order
to study genuinen-fragment correlations, one has to define
the n-fragment cumulantKn(y1 , . . . ,yn), which enters into
the expression forrn together with cumulants of the order
lower thann. The first few densities are

r2~1,2!5r1~1!r1~2!1K2~1,2!,

r3~1,2,3!5r1~1!r1~2!r1~3!1( r1~ i !K2~ j ,k!

1K3~1,2,3!,

r4~1,2,3,4!5r1~1!r1~2!r1~3!r1~4!

1( r1~ i !r1~ j !K2~k,l !1( r1~ i !K3~ j ,k,l !

1( K2~ i , j !K2~k,l !1K4~1,2,3,4!, ~48!

and so on, where the sums are taken over all permutations of
$1, . . . ,n% without the transposition inside the factors of the
sums. Then-fragment distribution densities in~48! are re-
lated to then-fragment inclusive cross sections

rn~y1 , . . . ,yn!5
1

s I

dns

dy1 . . .dyn
, n51,2 . . . , ~49!

where s I is the total inelastic cross section. The
n-fragment cumulant measures the statistical dependence of
the wholen-fragment set. Then-fragment cumulant is zero if
any of then fragments is independent of the others. The
second-order cumulant is equivalent to the two-fragment cor-
relations, but already at the three-fragment level the study of
the cumulant distribution requires the subtraction of the com-
binatorial part from the lower-order correlations from the
genuine three-fragment correlation function.

The factorial moments arise from the integration of the
corresponding particle distribution densities over a domain
V:

F̃15^m&V5E
V
dyr1~y!,

A

F̃k5^m~m21!•••~m2k11!&V

5E
V
dy1•••E

V
dykrk~y1 , . . . ,yk!, ~50!

A

The choice ofV depends on the physical problem consid-
ered. For example, in relativistic heavy-ion collisions or
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high-energy hadronic collisions, domainV refers usually to
the kinematic variables such as the longitudinal~rapidity! or
transverse momenta@25#. At lower energies, in the total
charge fragmentation regime (E/A.5–7 MeV!, this domain
was also identified with the range of masses~charges! of the
fragments@26,27#. In photoelectron count experiments,V
refers to the arrival time interval of photons exciting elec-
trons in the detector.

As for the factorial moments~50!, the factorial cumulants
~11! arise in the integration of the multifragment~multipar-
ticle! correlation functionKn(y1 , . . . ,yn) over a domainV
of the studied distribution. Equations~11! relating factorial
moments with factorial cumulant moments areexact inde-
pendent of the functional form of the underlying correlation
function. GivenF̃2, we may computef 2 and insert this into
the F̃3 identity in ~11!. MeasuringF̃3 in a domainV gives
then f 3, and so forth. Hence, if the experimental statistical
accuracy allows, one has access to the sequence of cumulant
moments and hence to the genuine, higher-order fragment
correlations. If all cumulant moments of order 3 and higher
are zero then only two-fragment correlations are present in
the system. Similarly, if only two- and three-particle corre-
lations are present, the correspondingf 3 term would be
present, but all cumulant factorial moments of order higher
than 3 would be identically zero. The structure of higher-
order cumulants was addressed in the context of high-energy
nuclear collisions where for certain reactions the cumulants
of order 3 and higher were found to be zero@28#. This yields
a particularly simple correlation scheme for those multihad-
ron production processes. In the FIB model, this correlation
scheme is nowhere exactly realized as shown by the analyti-
cal results in Eqs.~28!, ~30!, and~36! for the BS domain, the
marginal case (pF51/2,a.21), and the Cayley domain,
respectively. The numerical results for the evaporative frag-
mentation regime, shown in Figs. 8–10, confirm this finding
as well. However, whenpF is close to 1 in the BS fragmen-
tation domain, the higher-order cumulant moments approach
zero much faster than does the second-order cumulant mo-
ment, so the leading behavior of the binary fragmentation
process can be closely approximated by neglecting fragment-
fragment correlations of order higher than 2.

For other types of high-energy reactions, the linked-pair
approximation~LPA! of the higher-order cumulants, inspired
by the structure of the galaxy distribution in the universe
@29#, was applied to fit the data@28,30#. In the framework of
the LPA, the two-fragment cumulant correlations provide the
building blocks of the higher-order cumulants@28,31#, which
are built up as sums of products of linked two-particle cu-
mulants

Kp~1,2 . . .p!5Ap(
perm

)
p21

K2~1,2!. ~51!

Assuming the translational invariance and evaluating cumu-
lant moments in the strip approximation@28# produces nor-
malized factorial cumulant moments obeying

f p
f 1
p[gp5Ap~g2!

p215ApS f 2
~ f 1!

2D p21

. ~52!

Consequently,

Ap

Ap21
5

gp

gp21g2
5S f p

f p21
D S f 1f 2D ~53!

and

Ap5gp~g2
12p!. ~54!

The validity of the LPA can also be tested through various
scaling laws such as@32#

f p
f q

5
Aq

Ap
S f 2f 1D

q2p

. ~55!

The hierarchical amplitudesAp in the above formulas are
free parameters to be determined from the fit to the data. For
the LPA to be valid, the coefficientsAp or, equivalently,
gp should be independent of the fragment multiplicity
^m&N and hence of the sizeN of the fragmenting object. This
is the case inall domains of the multiplicity distributions for
the FIB process at the transition line with a notable exception
for the marginal casepF51/2.

The hierarchical structures for higher-order cumulant cor-
relations~51! have been used to fit the correlation of galaxies
and higher-order correlations in hadronic multiparticle data.
Numerous phenomenological hierarchical models that pos-
sess this linking scheme for correlation functions have been
constructed for that purpose@33#. The difference between
them lies in the pattern of theAp coefficients that measure
the amplification of higher-order correlations.

In the Cayley domain of the FIB process,A3 starts from
2 for pF50 and approaches 3 whenpF→1/2. In the limit
pF→1/2 of the BS fragmentation regime, the coefficientA3
approaches 3/2 and decreases to2` whenpF→1. Thus we
have a discontinuous change of the high-order correlations
when passing from Cayley domain to BS domain through the
critical pointpF51/2 of the branching process. The marginal
case (pF51/2,a.21! is particularly interesting because the
coefficientsAp are independent ofN even though allgp
depend onN explicitly. One should recall that the multiplic-
ity distributions in this case do not belong to the class of
Poisson transforms and do not satisfy the KNO scaling. In
this special case,A359/5 for a50.

In the BS domain of the FIB fragmentation process, we
have succeeded in calculating the dependence ofA3 on pF
analytically. At pF→1/2 the coefficientA353/2, indepen-
dently of a, and decreases monotonically with increasing
pF . For a50 it becomes negative forpF.0.8856 and di-
verges to2` whenpF→1. The precise value ofA3 in the
BS regime depends strongly on botha andpF and one may
hope to learn about the details of the rate functions from the
detailed knowledge of theAp’s. On the contrary, the hierar-
chical amplitudes are strictly independent ofa in the Cayley
regime. In the evaporative phase, amplitudesA3 are only
weakly dependent on botha and pF . In the limiting case
a52` ~dashed line!, A3 in the evaporative phase equals
2 independently ofpF . A qualitatively similar behavior is
seen also forA4. Figures 12 and 13 show the dependence of
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the hierarchical amplitudesA3 andA4 /A3 on the fragmenta-
tion probabilitypF in different fragmentation regimes on the
transition line.

In conclusion, the FIB process on the transition line has
the hierarchical structure of higher-order cumulants and
obeys the LPAeverywhere. In the Cayley and evaporative
fragmentation domains, this structure is somewhat trivial as
the mean multiplicity of fragmentŝm&N is approximately
independent of the system size and changes with the param-
eters $pF ,a% only. In these two domains,Ap are either
strictly independent ofa ~the Cayley domain! or the depen-
dence ona is very weak~the evaporative domain!. The hi-
erarchical amplitudesAp are discontinuous while passing
from the Cayley fragmentation regime to the BS regime
through the critical point of the FIB branching process. Thus
exact empirical knowledge of those amplitudes as a function

of pF permits, in principle, the detection of the change in the
structure of higher-order multifragment correlations associ-
ated with passing through the critical point of the associated
branching process.

VIII. CONCLUSIONS

In this work we have analyzed in detail the properties of
the multiplicity probability distributions as obtained in the
nonequilibrium sequential binary fragmentation model with
the inhibition. We have restricted our analysis to the transi-
tion line between thè -cluster and shattering phases of the
binary fragmentation. In this region, the FIB process is self-
similar at all scales until the low-mass cutoff for monomers,
i.e., the fragmentation probability does not depend on the
size of the fragmenting cluster for all fragments with masses
s.1. In our earlier works, we have studied the asymptotic
cluster-size distribution, which at the transition line is given
by the power lawns;s2t with t<2. In this region, the FIB
model describes well the fragment-size distribution and all
charge-fragment correlations in the heavy-ion collisions at
intermediate energies@34#. Other statistical approaches have
also been tried successfully@35#, so the supplementary infor-
mation contained in the multiplicity distributions and cumu-
lant correlations is strongly needed.

In this work we have emphasized the intrinsic properties
of classes of probability distributions of the critical FIB pro-
cess in order to see clearly those features not tied to a spe-
cific condition of the kinetic evolution. We believe that this
will help in correlating theoretical fragmentation scenarios
with experimental results. One should, however, remember
that multiplicity distributions in different domains at the
transition line depend principally on the exponentt and do
not allow for an unambiguous determination of the fragmen-
tation and inactivation kernels. These ambiguities should be
strongly emphasized in order to discourage premature con-
clusions.

Even though the KNO scaling appears to be replaced as a
fundamental symmetry of theSmatrix at ultrarelativistic en-
ergies, nevertheless, it should be remembered that much of
the energy redundancy is removed by plotting the data in the
KNO way. It is then interesting to note that the KNO scaling
appears from our studies as a fundamental property of the
critical binary fragmentation process, whenever the average
fragment multiplicity^m&N depends on the initial system size
N, i.e., in its low-viscosity (pF.1/2, a.21!, or BS phase
and is absent everywhere outside of the transition line@4#.
The appearance of the KNO scaling is hence related to the
second-order phase transitions associated with breaking the
initial system, characterized by a large scalar quantity~e.g.,
energy, mass, and charge! and called its ‘‘mass,’’ into dust
fragments, each one having only an infinitesimal portion of
the initial mass. In this sense the KNO scaling not only is a
property of certain relativistic field theories but more gener-
ally appears as a property of the critical fragmentation that
can be realized both in quantum systems as well as in the
macroscopic classical objects. This general foundation of the
KNO scaling opens the possibility for its existence in many
fragmentation processes in nature.

In order to analyze the higher-order correlations in the
multifragment~multiparticle! distributions one has to recog-

FIG. 12. Dependence of the hierarchical amplitudeA3 on the
fragmentation probabilitypF in different domains at the transition
line of the FIB model.

FIG. 13. Same as in Fig. 12, but forA4 /A3.
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nize that the density correlations contain usually lower-order
background correlations. These can be conveniently removed
using the cumulant correlation functions~48!. The statistical
independence of anyyi in Kp(y1 , . . . ,yp) results in factor-
ization of therp densities and vanishing cumulant. Hence
the cumulantsKp are key quantities to be produced by theo-
retical models of the fragmentation. Following the linked
pair ansatz~51!, the high-order cumulants can be expressed
in terms of the cumulants of order 2. We have found that the
critical FIB process, which obeys the KNO scaling of the
multiplicity probability distributions, is characterized also by
the appearance of the hierarchical structure of the higher-

order correlations. This particular structure for higher-order
correlations is absent in both̀-cluster and shattering phases
@4#. Up to now, no convincing explanation for the hierarchi-
cal structures of the multifragment~multiparticle! correlation
functions have been put forth, although Peebles@36# has
shown that a random fractal cascade process could have this
property. In view of the above results one is tempted to look
for the justification of its ubiquity in nature in the ubiquity of
the shattering transition. Curiously, the same correlation
structures describe galaxy correlations and phase-space cor-
relations in the multiparticle distributions in ultrarelativistic
collisions.
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